Quantifying the Comparative Method

COMPUTATIONAL APPROACHES TO HISTORICAL LINGUISTICS

The Comparative Method

The traditional workflow of historical and comparative linguistics

- Accounts for similarities that cannot be chance
 - Establishs genetic relationships among languages through commonly inherited forms

The Comparative Method

A number of different steps (Trask 2000:64-67):

- 1. Establish genetic relationship *prima facie*
 - Easy to do for closely related languages, such as Romance
- 2. Identify cognate sets through systematic correspondences of sounds in words of similar meaning
- 3. Set up proto-forms from the correspondence sets
 This allows us to reconstruct the proto-language and detect the sound changes that occurred from mother to daughter languages

Comparative Method in Action

Fortson 2004: 131	Language	Word		
	Latin	centum		
	Greek	hekaton		
	Tocharian B	kante		
	Old Irish	cét		
	Middle Welsh	cant		
	Gothic	hund		
	Sanskrit	śatám		
	Avestan	satəm		
	Lithuanian	šim̃tas		
	Old Church Slavic	sŭto		

Comparative Method in Action

Latin			С	е	n	t	u	m
Greek	(h	e)	k	а		t	0	n
Tocharian			k	а	n	t	е	
В								
Old Irish			С	é		t		
Middle			С	а	n	t		
Welsh								
Gothic			h	u	n	d		
Sanskrit			Ś	а		t	á	m
Avestan			S	а		t	ə	m
Lith			Š	i	ñ	t	а	S
OCS			S	ŭ		t	0	

Comparative Method

From these correspondence sets, we can reconstruct a proto-form: PIE $*\hat{k}mtom$

This process requires expert knowledge of the languages involved

Easy with a limited data set

 How can we do something like the Austronesian language family (1200+ languages)?

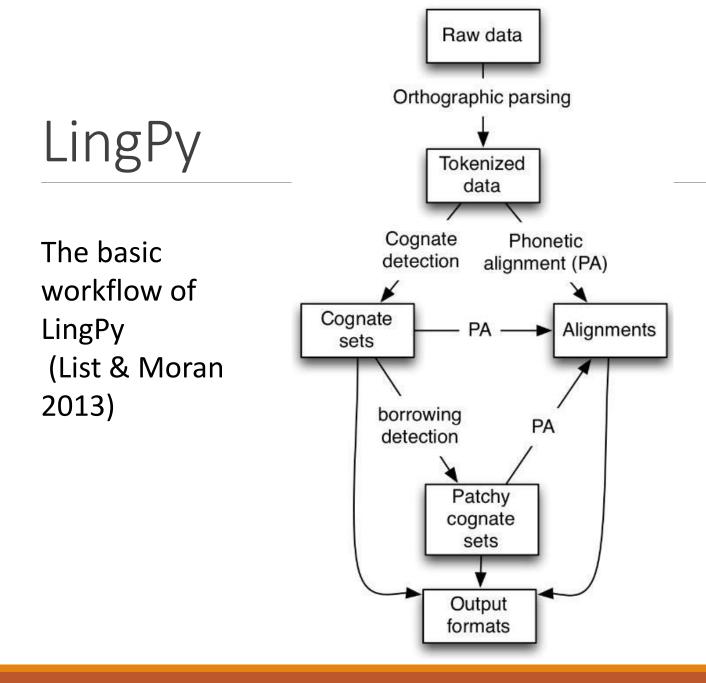
Computational Approaches

Quantitative and computational methods are being used more and more in historical linguistics

- More objective, transparent, and easily replicable (List & Moran 2013)
- Built from evolutionary phylogeny
- Concerned with the evolutionary history of species, genes, and morphological characteristics
- Compare to historical linguistics: investigates evolution of language, grammatical features, and words
- Data structure is similar—sequence of characters (DNA, etc.)

Computational Approaches

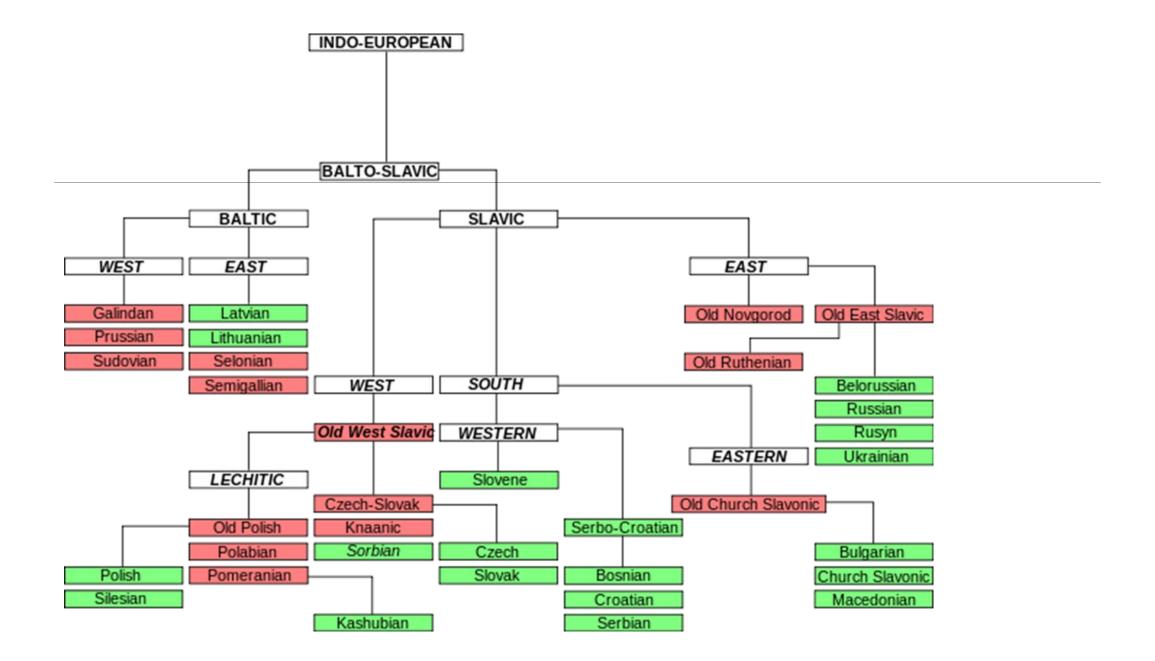
Previous methods:


- Phonetic alignment algorithms (Kondrak 2000)
- Tests for genealogical relatedness (Kessler 2001)
- Phylogenetic reconstruction (Holman et al. 2001)
- Automatic cognate detection (Steiner et al. 2011)
- Automatic borrowing detection (Nelson-Sathi et al. 2011)
- Automatic proto-form reconstruction (Bouchard-Cote et al. 2013)

LingPy (List & Forkel 2016)

An open-source python library

Source code is readily available online (lingpy.org)


It implements many computational methods in a general workflow mimicking the Comparative Method

Current Study

Apply the LingPy methods to Baltic and Slavic data

- Look at cognate judgements
- Establish a phylogenetic tree
- Create rough reconstructions
- Look at borrowing networks

Balto-Slavic Languages

Branch of Indo-European

- The specific relation between them is controversial
 - A single branch, like Indo-Iranian?
 - Two separate branches?
- Large number of words shared exclusively by Baltic and Slavic (Trautmann 1923)
- no major isogloss that separates the two branches
- Relatively lately attested:
 - Slavic ca. 9th century
 - Baltic cs. 12th century

Data

Swadesh lists for 6 Slavic languages and 3 Baltic languages
 Bulgarian, Czech, Croatian, OCS, Polish, Russian

- Latvian, Lithuanian, Old Prussian
- 172 words in each list

Lists taken from the Indo-European Lexical Cognacy Database (IELex, http://ielex.mpi.nl/)

Compiled from various etymological dictionaries

Data

Input data: Wordlist

 Tab-delimited text file organized into rows and columns with headers

ile Edit	Format \	/iew Help				
Word1		ien nep				_
DATA						
D	CONCEPT	IPA	DOCULECT	TOKENS		
ŧ						
540	I	as	Bulgarian	a s		
541	I	ja	Russian	ja		
.542	I	ja	Polish	ja		
.543	I	ja:	Czech	ja:		
.544	I	as	Old Prussian	a s		
545	I	es	Latvian	e s		
546	I	e∫	Lithuanian	e∫		
.547	I	jâ:	Serbo-Croatian		j â	:
548	Ι	azŭ	Old Church Slavi	ic	a z	Ŭ

Implementing the data

Import the wordlist file

LingPy can manipulate the data

- Find specific entries for concepts
- Return entries for specific languages
- Add new entries

The IPA entries need to be tokenized and aligned

Cognate Judgements

After tokenization, cognate judgements can be determined

Follows the STARLING approach

Cognate words are assigned the same cognate ID

Accomplished through the LexStat method (List 2012)

• Other methods (Turchin, NED, and SCA) are also available in LingPy

Results: Example Alignment

Language	Alignments					
Bulgarian	d		V	а		
Croatian	d		v	âː		
Czech	d		v	а		
Polish	d	-	V	а		
Russian	d	-	V	а		
OCS	d	ŭ	V	а		
Latvian	d	i	V	i		
Lithuania	d		V	i		
Old Prussian	d		W	ai		

Plays a crucial role in automatic approaches

Gets at the idea of sound correspondence sets

LexStat

Language-specific: no predefined scoring function

Uses an expanded version of Dolgopolsky's (1964) sound classes

Computes cognate distance scores through pairwise alignments, following Bouchard-Cote et al. (2013)

Close to the idea of sound correspondence sets

Words drawn from randomized sample

- Repeatedly aligned with each other
- Creates a distribution of sound transitions
- Compared to the actual distribution from aligned words in the wordlist

LexStat

Sequence conversion

Input converted to sound classes; sonority profiles determined

Scoring-scheme creation

• Language specific; created through a permutation method

Distance calculation

• Pairwise distance between all words are computed

Sequence clustering

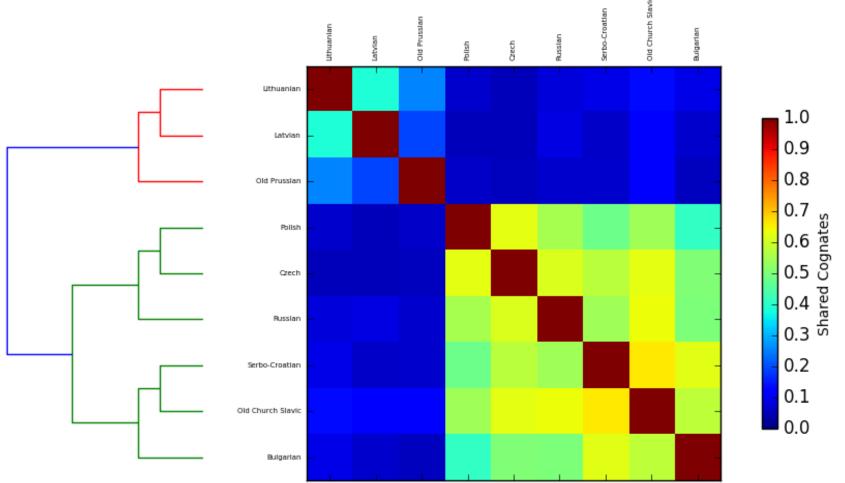
- Sequences clustered into cognate sets whose average distance is beyond a certain threshold
- Flat cluster variant of the UPGMA algorithm

LexStat output

Balto-Slavic_lexstat.qlc - Notepad								
File Edit Format View Help								
# Wordlist								
# META								
@vowel	.s:TV_							
@json:	{"para	ms": {"cl	uster": "lexstat_	_upgma_0.	50", "c	scorer'		
# DATA								
ID	CONCE	PT IPA	DOCULECT	TOKENS	LEXSTA	TID		
#								
1540	I	as	Bulgarian	as	1			
1541	I	ja	Russian	jа	2			
1542	I	ja	Polish	jа	2			
1543	I	ja:	Czech	ja:	2			
1544	I	as	Old Prussian	as	1			
1545	I	es	Latvian	e s	1			
1546	I	e∫	Lithuanian	e∫	1			
1547	I	jâ:	Serbo-Croatian	jâ:	2			
1548	I	azŭ	Old Church Slav	vic	αzŭ	1		
#								

Results: Cognate Judgements

Cognate words are assigned a CogID


For example, every word for "two" has a CogID of 971

Not foolproof

- Some missed cognates: 'I', 'full', etc.
 - Actual cognates can be misidentified because of sound classifications, alignments, etc.

Can display the percentage of cognates shared by languages in a heat map

Percentage Shared Cognates

Consensus Reconstruction

From this, we can create "quick and dirty" reconstructions

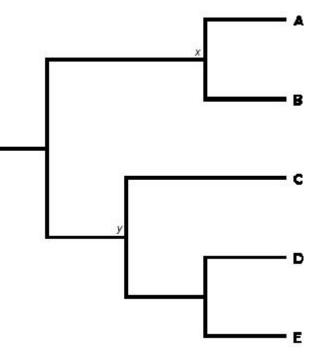
- Consensus strings are calculated from all alignments
- Selects the most frequent characters
- Typically around 2 edit operations from expert reconstructions

Results: Reconstructions

Examples:

For 'two', we get *dva • Cf. PSI *dъva, PBSI *duwō

For 'day', we get *dein-Cf. PBSI *dein-/*din-


For 'stone', we get Slavic *kamen-, Baltic *akmens
Cf. PSI *kamen~kamy, PB *akmo

For 'good', we get Slavic *dɔbr, Baltic *labs • Cf. PSI *dobrъ, PB *labas

Phylogenetic Trees

Also from this, we can create a simple bifurcating tree for the languages

- Use either Neighbor-joining or UPGMA
- Distance matrices=number of shared cognates
- Outputs simple Newick tree format
 - ((A,(B,C,),(D,E));

Results: Phylogenetic Tree

Borrowing Detection

Evolution of language is both a vertical and horizontal process

- Vertical=inheritance
- Horizontal=borrowing

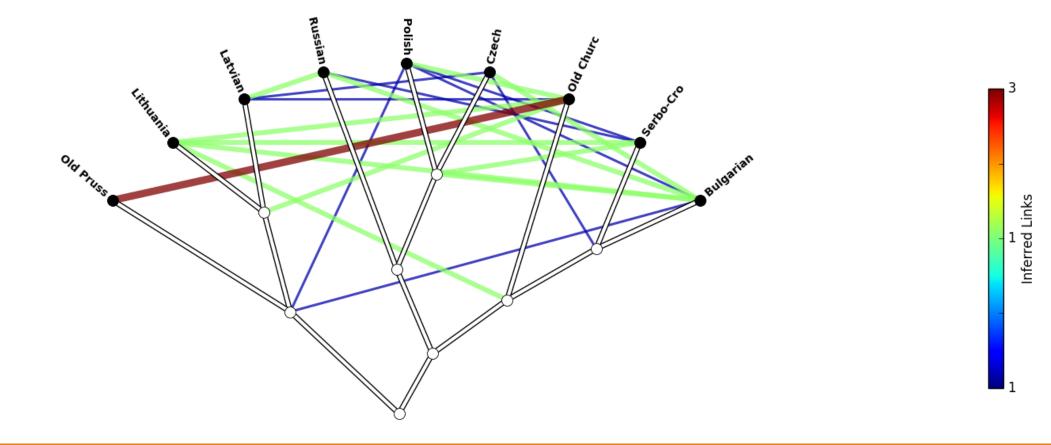
Follows the method of Nelson-Sathi et al. (2011)

 Apply phylogenetic networks to recover frequency of hidden borrowings

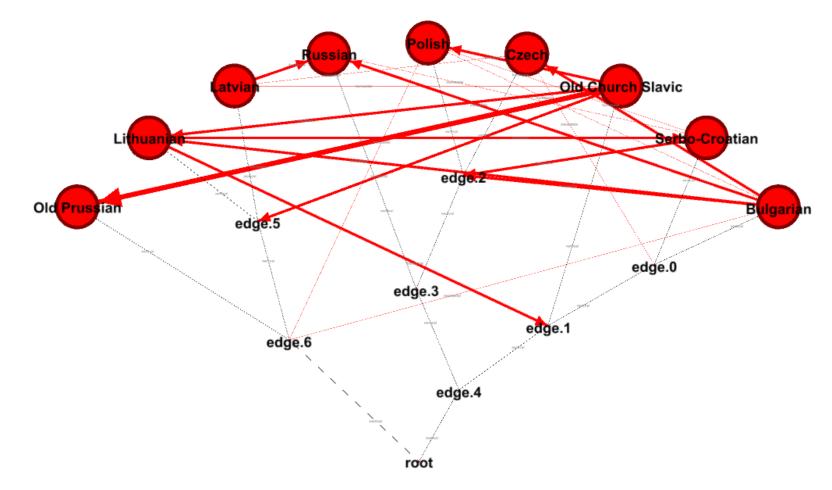
Borrowing Detection

Minimal Lateral Network (MLN)

- Networks=mathematical structures used to model pairwise relations between entities
 - Entities=vertices
 - Edges=interactions between vertices
- Applies the technique of gain-loss mapping to presence-absence patterns of cognate sets
- Searches for cognate sets incompatible with a reference tree typology
 - Points to borrowing


Results: Borrowing Detection

Use MLN to capture the inferred horizontal relationships


- Example: Old Prussian nage 'foot'
 - Cf. Lith. koja, Lat. kãja; Rus. noga, OCS noga

Plot the results against our reference tree

Results: Borrowing Detection

Results: Borrowing Detection w/Direction

Conclusions:

Useful, but not infallible

Best combined with expert knowledge

Needs refinement in cognate judgements and reconstructions

Baltic and Slavic:

- Still uncertain about their exact relationship
 - Need to examine it further within a wider Indo-European context
- Extensive borrowing into Baltic from Slavic
- Latvian and Lithuanian are more closely related than Old Prussian

Further Study

Cognate judgements

- Low B-Cubed scores (Bouchard-Côté et al. 2013)
- Expand on sound classes that are used to establish the cognate sets
- Implement expert judgements

IPA transcription

- This still has to be done by hand
- Letter-to-phoneme conversion as Machine Translation (Rama & Gali 2009)

Further Study

Track the development of individual words through the language network

- Both inheritance and borrowing
- Examine intermediate stages of words

Implement more data

- More languages
- Longer wordlists
- Examine Balto-Slavic within a wider Indo-European context

Bouchard-Côté, D. Hall, T. L. Griffiths, and D. Klein. 2013. Automated reconstruction of ancient languages using probabilistic models of sound change. PNAS, 110(11):4224–4229.

A. B. Dolgopolsky. 1964. Gipoteza drevnejšego rodstva jazykovych semej Severnoj Evrazii s verojatnostej točky zrenija [A probabilistic hypothesis concerning the oldest relationships among the language families of Northern Eurasia]. Voprosy Jazykoznanija, 2:53–63.

B. Fortson. 2004. Indo-European Language and Culture. Wiley-Blackwell: Oxford.

E. W. Holman, C. H. Brown, S. Wichmann, A. Müller, V. Velupillai, H. Hammarström, S. Sauppe, H. Jung, D. Bakker, P. Brown, O. Belyaev, M. Urban, R. Mailhammer, J.-M. List, and D. Egorov. 2011. Automated dating of the world's language families based on lexical similarity. Current Anthropology, 52(6):841–875

B. Kessler. 2001. The significance of word lists. Statistical tests for investigating historical connections between languages. CSLI Publications, Stanford.

J.M List and R. Forkel. 2016 : LingPy. A Python library for historical linguistics. Version 2.5. URL: http://lingpy.org, DOI:https://zenodo.org/badge/latestdoi/5137/lingpy/lingpy.

J.M. List and S. Moran. 2013. An Open Source Toolkit for Quantitative Historical Linguistics. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 13-18.

J.-M. List. 2012a. LexStat. Automatic detection of cognates in multilingual wordlists. In Proceedings of the EACL 2012 Joint Workshop of LINGVIS & UNCLH, pages 117–125. Association for Computational Linguistics.

T. Rama and K Gali. Modeling machine transliteration as a phrase based statistical machine translation problem. *Proceedings of the 2009 Named Entities Workshop: Shared Task on Transliteration*, 124-127.

S. Nelson-Sathi, J.-M. List, H. Geisler, H. Fangerau, R. D. Gray, W. Martin, and T. Dagan. 2011. Networks uncover hidden lexical borrowing in IndoEuropean language evolution. Proceedings of the Royal Society B, 278(1713):1794–1803.

L. Steiner, P. F. Stadler, and M. Cysouw. 2011. A pipeline for computational historical linguistics. Language Dynamics and Change, 1(1):89–127.

R. L. Trask. 2000. The dictionary of historical and comparative linguistics. Edinburgh University Press, Edinburgh.

R. Trautmann. 1923. Baltisch-Slavisches Worterbuch. Gottingen.